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Guaranteed Switches With Optical Fabrics
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Abstract—We consider traffic scheduling in an packet
switch with an optical switch fabric, where the fabric requires a
reconfiguration overhead to change its switch configurations. To
provide 100% throughput with bounded packet delay, a speedup
in the switch fabric is necessary to compensate for both the
reconfiguration overhead and the inefficiency of the scheduling
algorithm. In order to reduce the implementation cost of the
switch, we aim at minimizing the required speedup for a given
packet delay bound. Conventional Birkhoff–von Neumann traffic
matrix decomposition requires � � � � configurations
in the schedule, which lead to a very large packet delay bound.
The existing DOUBLE algorithm requires a fixed number of only
� configurations, but it cannot adjust its schedule according
to different switch parameters. In this paper, we first design a
generic approach to decompose a traffic matrix into an arbitrary
number of � � � � � � configurations.
Then, by taking the reconfiguration overhead into account, we
formulate a speedup function. Minimizing the speedup function
results in an efficient scheduling algorithm ADAPT. We further
observe that the algorithmic efficiency of ADAPT can be improved
by better utilizing the switch bandwidth. This leads to a more
efficient algorithm SRF (Scheduling Residue First). ADAPT and
SRF can automatically adjust the number of configurations in a
schedule according to different switch parameters. We show that
both algorithms outperform the existing DOUBLE algorithm.

Index Terms—Optical switch fabric, performance guaranteed
switching, reconfiguration overhead, speedup, scheduling.

I. INTRODUCTION

R ECENT progress on optical switching technologies
[1]–[4] has enabled the implementation of high-speed

scalable switches with optical switch fabrics, as shown in
Fig. 1. These switches can efficiently provide huge switching
capacity as demanded by the backbone routers in the Internet.
Since the input/output modules are connected with the central
switch fabric by optical fibers, the system can be distributed
over several standard telecommunication racks. This reduces
the power consumption for each rack, and makes the resulting
switch architecture more scalable.
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Fig. 1. Scalable switch with an optical switch fabric.

However, switches with optical fabrics suffer from a sig-
nificant reconfiguration overhead when they update their
configurations [5]. The reconfiguration overhead includes time
needed for: 1) interconnection pattern update (ranging from
10 ns to several milliseconds for different optical switching
technologies [1]–[4], [6]); 2) optical transceiver resynchroniza-
tion (10–20 ns or higher [5]); and 3) extra clock margin to align
optical signals from different input modules. With most fast
optical switching technologies [1]–[4] available nowadays, the
reconfiguration overhead is still more than one slot for a system
with slotted time equal to 50 ns (64 bytes at 10 Gbps).

During the reconfiguration period, packet switching is pro-
hibited. To achieve 100% throughput with bounded packet delay
(or performance guaranteed switching [6]), the fabric has to
transmit packets at an internal rate higher than the external line-
rate, resulting in a speedup. The amount of speedup is defined
as the ratio of the internal packet transmission rate to the external
line-rate. Speedup is directly associated with the implementa-
tion cost in practical switching systems. It concerns not only the
internal optical transmission rate, but also the memory access
time. In this paper, we focus on minimizing the speedup require-
ment for a given packet delay bound. The goal is to achieve a
cost-effective solution while at the same time maintaining guar-
anteed QoS performance of the system.

Assume each switch reconfiguration takes an overhead of
slots. Conventional slot-by-slot scheduling methods may

severely cripple the performance of optical switches due to
frequent reconfigurations. Hence, the scheduling rate has to
be slowed down by holding each configuration for multiple
time slots. Time slot assignment (TSA) [6]–[10] is a common
approach to achieve this. Assume time is slotted and each
time slot can accommodate one packet. The switch works in
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Fig. 2. Timing diagram for packet switching. (a) Pipelined switching and the packet delay bound. (b) An example of � � �� .

a pipelined four-stage cycle: traffic accumulation, scheduling,
switching and transmission, as shown in Fig. 2. Stage 1 is
for traffic accumulation. Its duration is a predefined system
constant. Packets arrived within this duration form a batch
which is stored in a traffic matrix . Each entry
denotes the number of packets arrived at input and destined to
output . Assume the traffic has been regulated to be admissible
before entering the switch, i.e., the entries in each line (row or
column) of sum to at most (defined as maximum line
sum ). In Stage 2, the scheduling algorithm is executed in
time slots to compute a schedule consisting of (at most)
configurations for the accumulated traffic. Each configuration
is given by a permutation matrix ,

where means that input port is connected to output
port . A weight is assigned to each and it denotes the
number of slots that should be kept for packet switching in
Stage 3. In order to achieve 100% throughput, the set of
configurations must cover , i.e., for
any . Because has entries and
each configuration can cover at most of them, the number of
configurations must be no less than the switch size . Oth-
erwise, the configurations are not sufficient to cover every
entry of [6], [8], [9]. In essence, this scheduling problem
is equivalent to a traffic matrix decomposition problem, where
the traffic matrix is decomposed into a set of weighted
configurations (or permutations). For optical switches, this
decomposition is constrained by the reconfiguration overhead
, and the scheduling algorithm needs to determine a proper

number of configurations to minimize speedup.
In Stage 3, the switch fabric is configured according to the

configurations and packets are switched to their designated
output buffers. Without speedup, Stage 3 requires

slots, where is the total holding time for the
configurations and is the total amount of reconfiguration
overhead. Since is generally larger than the
traffic accumulation time , speedup is needed to ensure that
Stage 3 takes no more than slots. During the holding time of a
configuration, some input-output connections become idle (ear-
lier than others) if their scheduled backlog packets are all sent.
As a result, the schedule will contain empty slots [7] and this
causes bandwidth loss, or algorithmic inefficiency. In general,

this bandwidth loss increases with the holding time . But a
short holding time implies frequent switch reconfigurations, or
large hardware inefficiency (due to large ). A good sched-
uling algorithm should compromise between hardware and al-
gorithmic inefficiency, and achieve a balanced tradeoff to min-
imize the speedup requirement.

At a speedup of , the slot duration for a single packet
transmission in Stage 3 is shortened by times. Then 100%
throughput can be ensured if

(1)

The values of and in (1) are determined by the
scheduling algorithm. Note that speedup can accelerate packet
switching in Stage 3, but cannot reduce the total amount of
reconfiguration overhead . Formula (1) also indicates that

must be true for any feasible schedule.
Rearranging (1), we have the minimum required speedup as

(2)

where

(3)

(4)

compensates for hardware inefficiency caused by
the times of switch reconfigurations. compensates
for algorithmic inefficiency.

Without loss of generality, we define a flow as a series of
packets coming from the same input port and destined to the
same output port of the switch. Since packets in each flow
follow first-in-first-out (FIFO) [11] order in passing through
the switch, there is no packet out-of-order problem within the
same flow. (But packets in different flows may interleave at the
output buffers.) Stage 4 takes another slots to dispatch the
packets from the output buffers to the output lines in the FIFO
order. Consider a packet arrived at the input buffer in the first
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slot of Stage 1. It suffers a delay of slots in Stage 1 for traffic
accumulation (i.e., the worst-case accumulation delay), and
another delay of slots in Stage 2 for algorithm execution. In
the worst case, this packet will experience a maximum delay
of slots in Stages 3 and 4 (assume it is sent onto the output
line in the last slot of Stage 4). Taking all the four stages into
account, the delay experienced by any packet at the switch is
bounded by slots as shown in Fig. 2(a). Note that
the value of depends on how the scheduling hardware is
engineered. For , a single set of scheduling hardware
can schedule all incoming batches. For sets
of scheduling hardware can be used in Stage 2 for pipelined
scheduling of multiple batches at the same time. This is feasible
because each batch is independently processed. Fig. 2(b) shows
an example of , where two sets of scheduling hardware
are used.

Several TSA-based scheduling algorithms have been pro-
posed to achieve performance guaranteed switching [6], [8],
[9]. Some of them target at minimizing the packet delay bound
using the minimum number of configurations in the
schedule. These algorithms are called minimum-delay sched-
uling algorithms. Examples include MIN [6] and QLEF [8], [9].
They generally have low algorithmic efficiency and thus require
a very large . Other algorithms favor larger number of
configurations to achieve higher algorithmic efficiency. For ex-
ample, EXACT [6] adopts the classic Birkhoff–von Neumann
decomposition [12]–[15] to generate
configurations. It achieves the smallest , but
results in a large packet delay bound, because the large value
of requires a very large traffic accumulation time to
ensure . DOUBLE [6] makes an efficient tradeoff
between the two extremes by using configurations
to achieve . To the best of our knowledge, all
previous performance guaranteed scheduling algorithms can
only produce schedules with one of the three fixed values:

or . Obviously that may not well suit
switches with different values of switch parameters, namely,
traffic accumulation time , switch size and the amount
of reconfiguration overhead . It is interesting to investigate
1) what will happen if other values are used; 2) which
value can minimize the overall speedup; and 3) how the switch
parameters , , and can affect the required speedup.

The above questions can be answered by a speedup function
derived in this paper for .1

Minimizing the speedup function leads to the proposal of a
novel ADAPT algorithm. ADAPT works by converting the
traffic matrix into a weighted sum of a quotient matrix

and a residue matrix . Then, is covered by
configurations and is covered by the other configurations
(detailed in Sections II and III). We further show that the
performance of ADAPT can be enhanced by sending more
packets in the configurations devoted to . This
leads to another algorithm SRF (Scheduling Residue First),
which requires an even lower speedup than ADAPT. Both

1We focus on this � range, because � � � ��� �� corresponds
to Birkhoff–von Neumann decomposition, and � � � corresponds to
minimum-delay scheduling which is handled by other algorithms (such
as QLEF [8], [9]).

ADAPT and SRF outperform DOUBLE [6], because they always
construct a schedule with a proper number of configurations
(instead of fixing to minimize speedup. In other
words, both ADAPT and SRF can automatically adjust the
schedule according to different switch parameters , , and
. Note that ADAPT and SRF are based on a generic matrix

decomposition approach proposed in this paper. This matrix
decomposition technique may also find applications in other
networks, such as SS/TDMA [16], [17], TWIN [18] and wireless
sensor networks [19]. It can also be applied to unconstrained
switches [6] (e.g., electronic switches) to reduce the number
of configurations in the schedule (compared to Birkhoff–von
Neumann decomposition) [14].

The rest of the paper is organized as follows. In Section II,
we derive a generic approach to decompose a traffic matrix into

configurations . Based on the
traffic matrix decomposition, our speedup function
is formulated. ADAPT algorithm is designed in Section III and
SRF algorithm is proposed in Section IV. Section V gives some
discussions. The paper is concluded in Section VI.

II. TRAFFIC MATRIX DECOMPOSITION AND SPEEDUP FUNCTION

A. Traffic Matrix Decomposition

To generate a schedule consisting of at most switch con-
figurations, we use to divide each entry

. For simplicity, we first assume is an integer.
The traffic matrix is then converted into a weighted sum
of a quotient matrix and a residue matrix .
That is,

(5)

Since the maximum line sum of is , we have

(6)

From (5) and (6), we get

(7)

and

(8)

With (7) and (8), it is easy to see that the maximum line sum of
is at most . According to Lemma 1 below, the quotient

matrix can be covered by configurations.
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Fig. 3. Bipartite multigraph and edge coloring.

Lemma 1: An matrix with maximum line sum
can be covered by configurations, each with a weight
of 1.

Proof: We first construct a bipartite multigraph [7],
[20][21] from , as illustrated by the example in Fig. 3.
Rows and columns of translate to two sets of vertices and

in , and each entry translates to edges connecting
vertices and . Since the maximum vertex degree
is at most can be edge-colored [20], [21] using

colors, such that the edges incident on the same
vertex have different colors. Each color is then mapped back to
generate a configuration, where the edges in this color translate
to at the corresponding entries and all other entries are

. As a result, the quotient matrix can be covered by the
configurations obtained, with a weight of 1 for each

configuration.
On the other hand, from (5) we have

(9)

Therefore, the residue matrix can be covered by any non-
overlapping configurations with a weight for each.
“Non-overlapping” means that any two of the configurations
do not cover the same entry of . Mathematically, these
non-overlapping configurations can add to an all-1 matrix. They
can be chosen (or predefined) arbitrarily without any explicit
computation.2

In summary, in (5) can be covered by configura-
tions. Among them, configurations are devoted to
and the other configurations are devoted to . Each config-
uration is equally weighted by . This com-
plies with our earlier assumption of using configurations in
the schedule.

2However, SRF in Section IV schedules��� in a more careful way to improve
the algorithmic efficiency.

B. Speedup Function

With the above traffic matrix decomposition, in (4)
can be formulated as follows:

(10)

Note that is further reduced in Section IV by (19).
If is not an integer, we can replace

by . From (10), this would increase by
at most . When , it can be ignored. For sim-
plicity, we assume is an integer.

Note that , , and are predefined switch parameters. From
(2) and (10), the overall speedup can be expressed in using
the speedup function below:

(11)

The importance of the above speedup function can be summa-
rized as follows: 1) it formulates how speedup changes with
the number of configurations (in the range of

); and 2) it allows us to study how the switch-depen-
dent parameters , , and can affect speedup .

C. An Example Based on DOUBLE

The traffic matrix decomposition in the existing DOUBLE al-
gorithm [6] can be regarded as a special case of our proposed
decomposition with . As mentioned in Section I,
DOUBLE uses to achieve . This is ob-
tained by replacing in (10) by . In DOUBLE,
is divided by to get the quotient matrix

and the residue matrix . Then, both and are covered
by configurations. Particularly, the configu-
rations devoted to are obtained from edge-coloring, and the
other non-overlapping configurations devoted to can be
chosen arbitrarily [6]. Each configuration is equally weighted
by . Fig. 4 gives an example of
DOUBLE execution.

III. ADAPT ALGORITHM

A. ADAPT Algorithm

Based on the speedup function in (11), we can
design a scheduling algorithm to minimize the overall speedup

. Let

(12)

Solving (12) for , we get

(13)
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Fig. 4. Eample of DOUBLE execution. The all-1 matrix used to cover��� equals
to the sum of the � non-overlapping configurations ���� � ��� �.

where

(14)

Since , we have . is used to normalize
the switch-dependent parameters , , and . Without this nor-
malization, it is generally difficult to compare speedup require-
ment among switches with different parameters , , and .
Otherwise, the comparison would be too complex, where each
parameter should be considered one by one and others should
be kept the same for a fair comparison. From (12)–(14), we can
see that the overall speedup is minimized if con-
figurations are used for scheduling.

The above analysis leads to our ADAPT algorithm, as sum-
marized in Fig. 5. The number of configurations required
by ADAPT is self-adjusted with switch parameters , , and
using (13). The traffic matrix is then covered by the
configurations obtained from the decomposition in Section II-A.
In practice, if and are not integers, we can set

and . Since is not
allowed, if , we can use instead.

Without loss of generality, let be the overall speedup
required by ADAPT. Substituting (13) into (11), we have

(15)

We can see that the minimized speedup only depends
on the value of . In other words, switches with the same value
of require the same speedup. This theoretical insight cannot
be easily seen without .

Fig. 5. ADAPT algorithm.

B. Performance Comparison with DOUBLE

Let denote the overall speedup required by
DOUBLE. Since DOUBLE uses configurations to
achieve , from (2) we have

(16)

ADAPT and DOUBLE are feasible only if and
are positive. From (15) and (16), this requires

for ADAPT and for DOUBLE. In other words, ADAPT
can always generate a feasible schedule (because or

is always true), but DOUBLE is feasible only if
or . In fact, if in DOUBLE, the

time slots in the switching stage (Stage 3 in Fig. 2) will be
fully occupied by the times of switch reconfigurations, and
no time can be left for packet switching. In this case, DOUBLE
cannot generate a feasible schedule even if the speedup is
infinite.

Recall that the packet delay bound is given by time
slots, and is directly related to the QoS that the switch can
provide. ADAPT can achieve a tighter packet delay bound than
DOUBLE. For example, if we set , a delay bound of

slots can be achieved by ADAPT at a proper speedup.
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However, this is impossible in DOUBLE as the minimum delay
bound it can provide must be larger than slots.

Even for the region where both DOUBLE and ADAPT
are feasible (i.e., ), from (15) and (16), it is easy to
prove that is always true. Therefore,
for the same set of switch parameters , , and , the overall
speedup required by ADAPT is always smaller than that
required by DOUBLE (except or , where

). For example, with , we
have and .

The running time of ADAPT is dominated by edge-coloring
of ( edges. This gives a time
complexity of log ) for ADAPT.

IV. SRF ALGORITHM

In both DOUBLE and ADAPT, the non-overlapping con-
figurations devoted to the residue matrix are chosen arbitrarily
without explicit computation. In this section, we design an SRF
(Scheduling Residue First) algorithm which schedules more
carefully to further reduce . Since DOUBLE is a spe-
cial case of ADAPT at , for simplicity, we first design
SRF based on DOUBLE.

A. Observation and Motivation

DOUBLE assigns an equal weight of to each of its
configurations (see the example in Fig. 4). We observe that a
schedule generated by DOUBLE may be inefficient. In partic-
ular, the bandwidth in the configurations devoted to is gen-
erally not well utilized (due to the bandwidth loss). If such oth-
erwise wasted bandwidth can be used to transmit some packets
in , the remaining packets in may be sent in a shorter amount
of time. That is, some configurations devoted to may require a
weight less than . Then the overall switch speedup require-
ment can be further reduced.

In DOUBLE, and for
any entry . If , we call the entry an LER
(large entry in ). Otherwise it is an SER (small entry in ). We
have the following Lemma 2 (proved in Appendix I).

Lemma 2: In DOUBLE, if a line (row or column ) of
contains LERs, then in we have

or

Fig. 6 gives an example based on the same and as in
Fig. 4. The third row of contains LERs .
Then the entries in the third row of sum to at most

.
Based on Lemma 2, we can move some packets from to ,

while still keeping the maximum line sum of no more than
. Note that all in DOUBLE equal to . If a line in

contains LERs, we can move half (i.e., of them to .
This is achieved by setting the moved LER entries to 0 in , and
at the same time increasing the corresponding entries in by
1. Fig. 6 shows this operation. We use and to denote the

Fig. 6. Move the circled LERs from��� to��� �� � ��� � � ��.

Fig. 7. Example of ��� and ���.

updated and . In Fig. 6, because the maximum line sum of
is at most 4, can still be covered by configurations,

each with the same original weight . Compared
to the example in Fig. 4, more packets are scheduled in the
configurations devoted to the quotient matrix.

Note that each line of can contain at most LERs. If half
of them are moved to (without increasing its maximum line
sum), then each line of will contain at most LERs (if

is even). Though we still need non-overlapping configura-
tions to cover , it is possible to reduce the weight for some of
them. Specifically, we may find half of the non-overlap-
ping configurations, each with the original weight ,
to cover all the remaining LERs in . The other half of the
non-overlapping configurations only need a reduced weight of

to cover the remaining SERs. If this can be
achieved, then can be reduced to

(17)

The above observation motivates us to explore a more effi-
cient scheduling algorithm than DOUBLE. The key is to find
a proper residue matrix , such that contains at most
LERs in each line, and each line sum of is not larger than .
Generally, this is not easy. For example, we assume that all the
non-zero entries in Fig. 7(a) are LERs. The number next
to each line of gives the number of LERs that can be moved
from this line to , i.e., half of the number of LERs in this line,
or . In Fig. 7(a), if the four circled entries are moved to ,
then we cannot further move any other LERs without violating
the quota of the corresponding lines. At this point, the last row
of still contains 3 LERs where . This makes it
impossible to cover the remaining LERs by configurations.
For larger switch size , it will be more difficult to figure out a
proper set of LERs to move.

B. SRF Algorithm

For simplicity, we first consider even switch size (an ex-
ample for odd is given in Appendix II). We map the residue
matrix into a 0/1 reference matrix such



638 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 2, APRIL 2009

Fig. 8. Partition ��� into four zones.

Fig. 9. ���������s for an 8� 8 matrix.

Fig. 10. Images.

that if is an LER and otherwise. Fig. 7(b)
gives an example of for in Fig. 7(a) (where all the are
LERs). A horizontal line and a vertical line are used to parti-
tion into four zones and as shown
in Fig. 8. The partitioning line (or ) separates each row (or
column) into two parts, and each part contains entries. In
addition, we define a set of non-overlapping predefined
partial configurations ( s) in a cyclic manner to cover all
the entries in zone . Specifically, if an entry 3 in zone
is covered by (where ), then

(18)

From (18),4 each covers entries in zone . Fig. 9
gives an example where four non-overlapping s (i.e.,

– are used to cover all the entries in zone of
an 8 8 matrix. For easy reading, we use an italic number at an

3For simplicity, we denote an entry by either its location in the matrix (e.g.,
entry ��� ��), or the matrix element at this location (e.g., entry � ).

4Note that the ���������s are not necessarily predefined in the cyclic manner as
in (18). In fact, any set of �	� non-overlapping permutation sub-matrices in
zone 


 can be used as ���������s. We use (18) only to facilitate the presentation.

entry to denote the index number if covers that entry.
For example, the circled entries in Fig. 9 are covered by .

For an arbitrary entry , we define its line images and
diagonal image as shown in Fig. 10. Particularly, and

are line images of , because they are symmet-
rical to with respect to the two partitioning lines and .

is the diagonal image as it is symmetrical to
with respect to the cross-point of and .

Without loss of generality, we consider .
For each entry (in zone ) covered by ,
we find its line and diagonal images. The 4-tuple

have 16
possible values (or combinations) as shown in Fig. 11. The
tuples in Figs. 11(a)–11(l) are defined as diagonal dominant
tuples (DD tuples), and the two circled diagonal entries in
each DD tuple are defined as dominant entries. Each dominant
entry in a DD tuple is no less than both of its line images. On
the contrary, the non-DD tuples in Figs. 11(m)–11(p) do not
have such a property (i.e., either pair of diagonal entries in
these tuples are not diagonal dominant). Each non-DD tuple in
Figs. 11(m)–11(n) is called a column isomorphic tuple because
the two columns are exactly the same. Similarly, the non-DD
tuples in Figs. 11(o)–11(p) are called row isomorphic tuples.

To cover the residue matrix using non-overlapping
configurations , we first initialize to
all-0 matrices. Then, based on the reference matrix , each

is sequentially examined to construct
two configurations and . Specifically, for each
covered by , we find its line and diagonal images to form
a 4-tuple .
The corresponding entries

in and are set
according to the three cases below.

Case 1: If the 4-tuple is a DD tuple, we set the two dominant
entries to 1 in , and set the other two non-dominant entries to
1 in .

Case 2: If the 4-tuple is a row isomorphic tuple, we check
whether there exist other row isomorphic tuples in the same row
pair (which may occur when examining an earlier

.) If no, we set either pair of the diagonal entries to
1 in , and set their line images to 1 in . For example,
if the two entries and are set to
1 in , then the entries and are
set to 1 in . On the other hand, if some row isomorphic
tuples occurred earlier in the same row pair, we set the entries
in and according to the most recently occurred one.
Assume that the most recent row isomorphic tuple in this row
pair occurred in examining (where ). Note that two
configurations and have been obtained in examining

. If was set to cover a “1” in row and a “0” in row
of , then we set to cover a “1” in row

and a “0” in row , and vice versa. Fig. 12 gives an example.
Assume that the two dash-circled entries have been set to 1 in

. Then, the two solid-circled entries are set to 1 in . At the
same time, their line images (i.e., the two entries in the triangles)
are set to 1 in . The goal is to let and cover the

in row and row of in an alternating manner.
We call this the butterfly mechanism.
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Fig. 11. Sixteen possible combinations of �� � � � � � � �.

Fig. 12. Butterfly mechanism.

Fig. 13. Residue matrix scheduling based on ���.

Case 3: If the 4-tuple is a column isomorphic tuple, we use
the same mechanism as in Case 2 to set and , but we
operate on the corresponding column pair instead of row pair.

A 4 4 example is given in Fig. 13. For simplicity, we
only discuss the construction of and . In examining

(which covers entries (0, 0) and (1, 1) in zone ),
are first identified as dominant entries in the 4-tuple

. Therefore, the two entries (0, 0) and (3,
3) are set to 1 in . Then, we can see that
is a row isomorphic tuple. Since no other row isomorphic
tuples precede it so far, we simply set the two solid-circled
entries (1, 1) and (2, 2) to 1 in . In examining (which
covers entries (0, 1) and (1, 0) in zone ),
is also a row isomorphic tuple but it resides in a row pair
different from that of (which occurred
earlier in examining ). Since no other row isomorphic
tuples precede it in the same row pair, we can set either pair
of the diagonal entries to 1 in . In Fig. 13, the two diagonal
entries (0, 1) and (3, 2) are set to 1 in . After that, the row
isomorphic tuple is considered. Because
another row isomorphic tuple precedes
it in the same row pair, we need to set according to the
butterfly mechanism. As a result, the two dash-circled entries
(1, 0) and (2, 3) are set to 1 in .

Obviously, the above process generates non-overlapping
configurations to cover every entry of the residue ma-
trix. This is because the entries covered by the s in zone
and their corresponding images do not overlap each other. On
the other hand, usually cover more than half of
for each and all of the lines in . This is because the dominant
entries in each DD tuple are always covered by a configuration
among . For non-DD tuples, the number of cov-
ered by and in each line of are
well balanced by the butterfly mechanism.

However, foraparticular linein , thenumberof1 coveredby
(denoted by ) may be one less than that covered by

(denoted by ). This is due to the odd number of
isomorphic tuples in the corresponding line pair and the butterfly
mechanism. Assume there are isomorphic tuples in a particular
row or column pair. For simplicity, we only consider these iso-
morphic tuples when counting and . If is even, then and
can be perfectly balanced by the butterfly mechanism, and thus

.Ontheotherhand, if isodd, then thebutterflymechanism
leads to . Generally, if DD tuples are also taken into
account, we have either or for each and all of the
lines in . In other words, among all the in each line of

, the configurations always cover “more than
half” and the other configurations always
cover “less than half” of them (quotes are used here because the
case is an exception).

Recall that =1 means is an LER. Therefore, if
cover some in , we can move the corre-

sponding LERs from to . This gives us and . From
Lemma 2, the maximum line sum of will not exceed .
This is also true if for some lines in . Note
that in Lemma 2 equals to . If , then is
odd and the roof function in Lemma 2 can handle this case.
Consequently, all the remaining LERs in can be covered by

with a weight for each configuration.
Besides, may also cover some SERs in . For the
remaining SERs in that are not covered by , they
can be covered by with a reduced weight of

. This leads to as conjectured
in (17), instead of in DOUBLE.

The above discussion is based on DOUBLE algorithm, and
DOUBLE is a special case of ADAPT at . In general,
we have the following theorem.

Theorem 1: To switch an admissible traffic matrix
in configurations (where
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and ), in (19) is sufficient if is even and
is a multiple of .

(19)

Proof: By using ) to divide each entry
, we convert into a weighted sum of and as in

(5). The maximum line sum of is at most (see (7)
& (8)), and each entry is not larger than )
[see (9)].

Define an arbitrary entry as an LER if
. Similar to Lemma 2, we can prove that

if a particular line of contains LERs, then the entries in
the corresponding line of sum to at most .
Accordingly, we can construct and by moving a proper
set of LERs from to , such that the maximum line sum
of is still not more than , and each line of
contains at most LERs. Then, can be covered by
non-overlapping configurations, with a weight )
for configurations and a reduced weight
for the other configurations. On the other hand, can be
covered by configurations with a weight )
for each, as discussed in Section II-A. Consequently, we have

Corollary 1: With in (19), the overall speedup can
be formulated by the speedup function below:

(20)

Proof: Compared to in (10), in (19) is
reduced. We can replace in (2) by (19). This gives us
a refined speedup function (still denoted by ) for
simplicity).

Corollary 2: To minimize the overall speedup, a schedule
should consist of configurations where is formulated
by

(21)

Proof: Based on the refined speedup function )
in (20), we can solve (12) for to minimize the overall
speedup . The value obtained is generally a real number
(denoted by in (21)). We can convert it into an integer

using (21), where is defined in (14) and must
be true. Formula (21) also prevents . This ensures that
the traffic matrix decomposition can be carried out properly.

Based on the above analysis, SRF (Scheduling Residue First)
algorithm is designed and is summarized in Fig. 14. SRF guar-
antees a better algorithmic efficiency than both DOUBLE and
ADAPT, by taking residue matrix scheduling as a priori. Ac-
cordingly, SRF adopts a refined matrix decomposition which is
slightly different from that given in Part A of Section II. Com-
pared with ADAPT, SRF needs an extra ) comparisons
for residue matrix scheduling, but it still has the same time com-
plexity of as ADAPT.

Corollary 3: Let be the traffic accumulation time and
be the execution time of the scheduling algorithm. The overall
speedup in (22) is sufficient to transmit an admis-
sible with a packet delay bound of slots.

where (22)

Proof: SRF algorithm in Fig. 14 can achieve performance
guaranteed switching with a packet delay bound of slots
(see Fig. 2(a)). From (2), (3), (19) and (21), we can formulate
the overall speedup required by SRF as below.

So far we have discussed SRF based on an even switch size
. SRF can be extended to odd with minor modifications.

Appendix II gives an example with a 9 9 reference matrix .

V. DISCUSSION

Fig. 15 compares the overall speedup of the three algorithms:
in (16), in (15), and in (22). For sim-

plicity, we focus on an optical switch with a given switch size
and a given reconfiguration overhead . From (14), varying

now corresponds to varying the traffic accumulation time ,
and thus the packet delay bound (assume the algo-
rithm’s execution time is constant). Accordingly, Fig. 15
shows the tradeoff between the overall speedup and the packet
delay bound for the three algorithms. Since DOUBLE is a spe-
cial case of ADAPT at , in Fig. 15 we can see that
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Fig. 14. SRF algorithm for even switch size � .

at . For other values,
we have . At the same time,

is always true. For example, at , we have
and . SRF out-

performs ADAPT and DOUBLE by 16.78% and 58.39% re-

Fig. 15. Speedup comparison of DOUBLE, ADAPT and SRF.

spectively. We can see that ADAPT and SRF dramatically cut
down the required speedup for delay-sensitive traffic with small

values. As increases, the speedup gap between DOUBLE
and ADAPT/SRF diminishes.

ADAPT and SRF can also be used to minimize the required
traffic accumulation time and the packet delay bound for a given
speedup requirement. Assume we can only tolerate a speedup
up to 3. Consider a 64 64 fast optical switch with a reconfig-
uration overhead of 100 ns [5]. Let the duration of a time slot
be 50 ns (64 bytes at 10 Gbps). We have slots. Further
let and denote the traffic accumula-
tion times required by DOUBLE, ADAPT and SRF under the
given speedup , and denote
their corresponding values. From (16), (15) and (22), we get

and . From
(14), we get slots (38.4 s),
slots (35.95 s) and slots (30.7 s). We can see
that . Note that both speedup and
packet delay bound take realistic values in this example (e.g., the
packet delay bound for SRF is , where

is the algorithm’s execution time). Compared to DOUBLE,
the required traffic accumulation time is cut down by 6.38% in
ADAPT and by 20.05% in SRF.

From our discussion in Section I, (and thus
) must be ensured in any feasible schedule.

Since DOUBLE enforces , its traffic accumulation
time must be larger than . Therefore,
DOUBLE is only feasible for , as shown in Fig. 15. In
comparison, both ADAPT and SRF are feasible for . This
is because (or ) always ensures in
ADAPT and SRF. In ADAPT, the number of configurations in
a schedule is optimized to be , and thus

(23)

Similarly, with and in (21) for SRF, is
ensured in SRF because

(24)
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Fig. 16. Example of DOUBLE, ADAPT and SRF execution.

On the other hand, if we consider the feasibility region in terms
of speedup , then DOUBLE is only feasible for (i.e.,

). In com-
parison, both ADAPT and SRF are feasible for .

Fig. 16 gives a simple example to compare the execution of
DOUBLE, ADAPT and SRF. Although DOUBLE produces the
smallest (but the largest ), it requires the largest
overall speedup of , whereas ADAPT requires

and SRF only requires .
In this paper, we presented a generic approach to decompose

a traffic matrix into an arbitrary number of
) configurations/permutations. For general applica-

tions in other networks, it may or may not have a constraint of
reconfiguration overhead. If such a constraint exists, the corre-
sponding system can be modeled as a constrained switch [6]
(e.g., SS/TDMA [16], [17] and TWIN [18]), and ADAPT/SRF
algorithms can be directly applied. If such a constraint does not
exist, our generic matrix decomposition can still be applied.
For example, computing a schedule for an electronic switch
(which has negligible reconfiguration overhead) is difficult as
switch size increases [6], [14], [24]. This is because the large
number of ) configurations in Birkhoff-von Neumann de-
composition limits the scalability of the switch [14]. In this
case, our generic matrix decomposition can be applied to gen-
erate a schedule with less number of configurations, at a cost of
speedup.

It should be noted that is ensured in ADAPT and
SRF because . As mentioned in Section I, corre-
sponds to minimum-delay scheduling, and it can be handled by
QLEF algorithm [8], [9]. Also note that in this paper we focused
on performance guaranteed switching with worst-case analysis.

Average performance analysis is out of the scope of this paper,
but can be handled by two existing greedy algorithms, GOPAL
[22] and LIST [6], [23].

VI. CONCLUSION

The progress of optical switching technologies has enabled
the implementation of high-speed packet switches with optical
fabrics. Compared with conventional electronic switches, the re-
configuration overhead issue of optical switches must be prop-
erly addressed.

In this paper, we focused on designing scheduling algorithms
for optical switches that provide performance guaranteed
switching (100% throughput with bounded packet delay).
We first designed a generic approach to decompose a traffic
matrix into the sum of weighted switch configurations (for

where is the switch size). We then
took the reconfiguration overhead constraint of optical switches
into account, and formulated a speedup function to capture the
relationship between the speedup and the number of configura-
tions in a schedule. By minimizing the speedup function,
an efficient scheduling algorithm ADAPT was designed to
minimize the overall speedup for a given packet delay bound.
Based on the observation that some packets can be moved from
the residue matrix to the quotient matrix and thus the bandwidth
utilization of the configurations can be improved, another algo-
rithm SRF (Scheduling Residue First) was designed to achieve
an even lower speedup. Both ADAPT and SRF algorithms can
automatically adjust the schedule according to different switch
parameters, and find a proper value to minimize speedup.
We also showed that ADAPT and SRF can be used to minimize
packet delay bound under a given speedup requirement.

APPENDIX I
CORRECTNESS PROOF OF LEMMA 2

Lemma 2: In DOUBLE, if a line (row or column ) of
contains LERs, then in we have

or

Proof: After the entries in are divided by , we
have

Without loss of generality, we only consider row of and
assume that it contains LERs. Because
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Fig. 17. SRF implementation for � � �.

we have

Since is an integer, we then have

APPENDIX II
SRF EXTENSION FOR ODD SWITCH SIZE

To show how SRF can be extended to odd switch size ,
we consider the 9 9 reference matrix in Fig. 17(a) (i.e.,

). We call row/column the middle
row/column. The non-overlapping configurations devoted to

can be constructed with the following two steps.
Step 1: We first consider the entries in the middle row and the

middle column of , and the entries in the two matrix diagonals,
as shown in Fig. 17(b). An extra 4-tuple (denoted by x-tuple)
is defined as for . For
example, the solid-circled and dash-circled entries in Fig. 17(b)
form two x-tuples, with and respectively.

In each x-tuple, a pair of entries resides in the middle row
(row 4) and the other pair resides in the middle column (column
4). For each pair, if one entry is no less than the other entry,
then we define it as a dominant entry and the other entry is
non-dominant. For example, we can take entries (4, 8) and
(8, 4) as two dominant entries in x-tuple ,
whereas entries (4, 0) and (0, 4) are non-dominant. Then, based

on the two dominant entries (4, 8) and (8, 4), we draw two solid
lines as in Fig. 17(c) and find the entry at the cross-point of the
two lines, which is defined as a cross-point entry. The diagonal
image of the cross-point entry, as shown by the solid-triangle in
Fig. 17(c), is defined as the partner of the two dominant entries
(4, 8) and (8, 4). Similarly, for dominant entries (4, 2) and (2, 4)
in x-tuple , entry (2, 2) is the cross-point
entry, and (6, 6) is the partner of the two dominant entries, as
shown by the dashed part in Fig. 17(c).

For each possible x-tuple
, the two dominant entries and their partner are set to 1

in configuration . At the same time, the two non-dominant
entries and the cross-point entry are set to 1 in

. in Fig. 17(d) give the result of this operation,
where we use a set for each configuration to record the three
entries that are set to 1. In Fig. 17(b), we remove all the entries
recorded in of Fig. 17(d), the remaining 9 entries are
set to 1 in , as shown in Fig. 17(d).

At the end of Step 1, we can see that all the entries in
Fig. 17(b) have been covered by the partial configurations

in Fig. 17(d). For each matrix line (row or column),
let be the number of covered by , and be the
number of covered by . In Fig. 17(e), we use circles
and triangles to indicate the entries covered by and

, respectively. The number next to each matrix line in
Fig. 17(e) gives the value of for this line. In the example,
we can see that for every line. In general, it is easy to
prove that is always true. It means that the partial
configurations in Fig. 17(d) usually cover more
than for each line in Figs. 17(b) & (e). If this is not
the case, then can cover at most one more 1 for some
lines. It is also not difficult to prove that, for a particular line
pair (i.e., row pair or column pair ),
at most one line (but not both) can have .
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Step 2: In Fig. 17(f), we shade all the entries covered so far
using filled rectangles. Then, we pick up a partial configura-
tion from Fig. 17(d) and use dash lines
to shadow the rows and columns of its three entries. Assume

is chosen (i.e., ). Fig. 17(f) shows the result after
the shadowing operation. We can use maximum-size matching
[25] to determine a in zone , such that it contains the
maximum number of not-yet-shadowed and not-yet-covered en-
tries, each in a distinct row and column in zone . As shown in
Fig. 17(f), the found contains three circled entries. For
each circled entry, we find its line and diagonal images to form
a 4-tuple . If it
is a DD-tuple, the two dominant entries are set to 1 in , and
the two non-dominant entries are set to 1 in .
If it is an isomorphic tuple, we use the butterfly mechanism to
set the entries in and . If an entry is set to 1 in
or , we add it to the corresponding partial configuration in
Fig. 17(g) (see the underlined entries), and shade this entry by
a filled rectangle as we have done in Fig. 17(f) (because it has
been covered).

It is important to note that we need to slightly modify the
butterfly mechanism for odd switch size . Recall that for even

, if an isomorphic tuple is the first one in a particular line pair,
we can set the corresponding configurations according to either
pair of its diagonal entries. However, for odd , we have an
initial state as shown in Fig. 17(e), where for some
matrix lines. It means that the number of 1 covered by the
partial configurations and in Fig. 17(d)
may not be perfectly balanced for every line at the beginning
of Step 2. If for a particular line, we can treat
it as if another preceding isomorphic tuple already exists in the
corresponding line pair. Therefore, for the first isomorphic tuple
in this line pair, we should take this initial state into account,
and set the entries in the corresponding configurations to ensure

for both lines. After that, we can use the same
butterfly mechanism as in Fig. 12 for all subsequent isomorphic
tuples in this line pair.

At the end of Step 2, we remove all the dash lines in Fig. 17(f).
Then, Step 2 is repeated for another in
Fig. 17(d), until all the configurations are obtained,
as shown in Fig. 17(g).

The entries covered by [in Fig. 17(g)] are circled
in Fig. 17(h). The number next to each matrix line in Fig. 17(h)
gives the difference on the number of covered by
and for that line. Note that cover more
than for each line. Therefore, for those covered
by , we can move the corresponding LERs from
to . Then, can be weighted by a reduced weight of

. In this 9 9 example, the set of configurations
contains one more configuration than . For

large switch size , this difference is trivial.
It is not difficult to extend the above approach to other odd

switch size . Note that maximum-size matching [25] in Step
2 is only used to find a predefined pattern. It is not really
required for online execution. Therefore the time complexity of
SRF algorithm is still for odd .
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